Respuesta :

Given:

The complex number is

[tex]-1-i[/tex]

To find:

The polar form of given complex number.

Solution:

If z=a+ib, then

[tex]r=|z|=\sqrt{a^2+b^2}[/tex]

[tex]\tan \theta = \dfrac{b}{a}[/tex]

The polar form is [tex]z=r(\cos \theta +i\sin \theta)[/tex].

Let the complex number is

[tex]z=-1-i[/tex]

Here, a=-1, b=-1. Both a and b are negative. So, z lies in III quadrant.

[tex]r=\sqrt{(-1)^2+(-1)^2}[/tex]

[tex]r=\sqrt{1+1}[/tex]

[tex]r=\sqrt{2}[/tex]

And,

[tex]\tan \theta = \dfrac{-1}{-1}[/tex]

[tex]\tan \theta = 1[/tex]

[tex]\tan \theta = \tan (\pi+\dfrac{\pi}{4})[/tex]     (because z lies in III quadrant)

[tex]\tan \theta = \tan (\dfrac{5\pi}{4})[/tex]

[tex]\theta = \dfrac{5\pi}{4}[/tex]

Now, the polar form of given complex number is

[tex]z=r(\cos \theta +i\sin \theta)[/tex]

[tex]z=\sqrt{2}(\cos \dfrac{5\pi}{4} +i\sin \dfrac{5\pi}{4})[/tex]

Therefore, the required polar form is [tex]z=\sqrt{2}(\cos \dfrac{5\pi}{4} +i\sin \dfrac{5\pi}{4})[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE