contestada

The equations of three lines are given below.
Line 1: 2y = 3x+7
Line 2: 4x-6y=-2
3
Line 3: y==x-4
For each pair of lines, determine whether they are parallel, perpendicular, or neither.
Line 1 and Line 2:
O Parallel
O Perpendicular O Neither
Х
?
Line 1 and Line 3: O Parallel O Perpendicular ONeither
Line 2 and Line 3:
O Parallel Operpendicular ONeither

The equations of three lines are given below Line 1 2y 3x7 Line 2 4x6y2 3 Line 3 yx4 For each pair of lines determine whether they are parallel perpendicular or class=

Respuesta :

Answer:

a) Neither

b) parallel

Two slopes are L₁  and L₃ is equal

∴ L₁  and L₃ are parallel lines

c) neither

Step-by-step explanation:

Step(i):-

Given that the Line 1

                         2 y = 3x+7

                           [tex]y = \frac{3}{2} x+\frac{7}{2}[/tex]   ...(i)

comparing       y = m x +c

               here  [tex]m = \frac{3}{2}[/tex]

Given that the Line 2

                     4x-6y =-2

                     4x +2 =6y

                    [tex]y = \frac{4}{6} x + \frac{2}{6}[/tex]

                   [tex]y = \frac{2}{3} x + \frac{1}{3}[/tex]   ...(ii)

                 m = [tex]\frac{2}{3}[/tex]

The two lines are not parallel or perpendicular

Step(ii):-

     Given that line 3    

             [tex]y = \frac{3}{2} x -4[/tex]    ...(iii)

     here  [tex]m = \frac{3}{2}[/tex]

Two slopes are L₁  and L₃ is equal

∴ L₁  and L₃ are parallel lines

Step(iii):-

     [tex]y = \frac{2}{3} x + \frac{1}{3}[/tex]   ...(ii)

      [tex]y = \frac{3}{2} x -4[/tex]    ...(iii)

L₂  and L₃ arenot  parallel lines and not perpendicular

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE