Answer:
a) Neither
b) parallel
Two slopes are L₁ and L₃ is equal
∴ L₁ and L₃ are parallel lines
c) neither
Step-by-step explanation:
Step(i):-
Given that the Line 1
2 y = 3x+7
[tex]y = \frac{3}{2} x+\frac{7}{2}[/tex] ...(i)
comparing y = m x +c
here [tex]m = \frac{3}{2}[/tex]
Given that the Line 2
4x-6y =-2
4x +2 =6y
[tex]y = \frac{4}{6} x + \frac{2}{6}[/tex]
[tex]y = \frac{2}{3} x + \frac{1}{3}[/tex] ...(ii)
m = [tex]\frac{2}{3}[/tex]
The two lines are not parallel or perpendicular
Step(ii):-
Given that line 3
[tex]y = \frac{3}{2} x -4[/tex] ...(iii)
here [tex]m = \frac{3}{2}[/tex]
Two slopes are L₁ and L₃ is equal
∴ L₁ and L₃ are parallel lines
Step(iii):-
[tex]y = \frac{2}{3} x + \frac{1}{3}[/tex] ...(ii)
[tex]y = \frac{3}{2} x -4[/tex] ...(iii)
L₂ and L₃ arenot parallel lines and not perpendicular