Respuesta :

Answer:

c)  C

 [tex]y = A e^{\frac{(x-b)^{2} }{c} }[/tex]  

Step-by-step explanation:

Explanation:-

Normal distribution

A random variable 'x' is said to have a normal distribution. if its identity function or probability is given by

f( x,μ,σ) = [tex]\frac{1}{\alpha \sqrt{2\pi } } e^{\frac{(x-b)^{2} }{c} }[/tex]   ...(i)

Here 'b' be the mean of the normal distribution

And σ be the standard deviation

and C = 2σ²

Now, the equation (i) changes to

          [tex]y = A e^{\frac{(x-b)^{2} }{c} }[/tex]      this represents the normal graph

where A = [tex]\frac{1}{\alpha \sqrt{2\pi } }[/tex]   and  C = 2σ²

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE