Respuesta :

Given:

PQRS is a circle, PQT and SRT  are straight lines.

To find:

The value of x.

Solution:

Since PQRS is a circle, PQT and SRT  are straight lines, therefore, PQRS isa cyclic quadrilateral.

We know that, sum of opposite angles of a cyclic quadrilateral is 180 degrees.

[tex]m\angle SPQ+m\angle QRS=180^\circ[/tex]

[tex]81^\circ+m\angle QRS=180^\circ[/tex]

[tex]m\angle QRS=180^\circ-81^\circ[/tex]

[tex]m\angle QRS=99^\circ[/tex]

Now, SRT  is a straight line.

[tex]m\angle QRT+m\angle QRS=180^\circ[/tex]             (Linear pair)

[tex]m\angle QRT+99^\circ=180^\circ[/tex]

[tex]m\angle QRT=180^\circ-99^\circ[/tex]

[tex]m\angle QRT=81^\circ[/tex]               ...(i)

According to the Exterior angle theorem, in a triangle the measure of an exterior angle is equal the sum of the opposite interior angles.

Using exterior angle theorem in triangle QRT, we get

[tex]m\angle PQR=m\angle QRT+m\angle QTR[/tex]

[tex]x=81^\circ+22^\circ[/tex]

[tex]x=103^\circ[/tex]

Therefore, the value of x is 103 degrees.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE