Answer:
B. v(t) = sin(t) + cos(t) + 2
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
Calculus
Antiderivatives - Integrals
Integration Constant C
Solving Integration Equations
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
*Note: Remember that the velocity function is the integral of the acceleration function/acceleration is the derivative of velocity.
[tex]\displaystyle v'(t) = a(t)\\v(t) = \int {a(t)} \, dt[/tex]
Step 1: Define
a(t) = cos(t) - sin(t)
v(0) = 3
Step 2: Integrate
- Set up integral: [tex]\displaystyle v(t) = \int {cos(t) - sin(t)} \, dt[/tex]
- [integral] Rewrite [Integration Property - Subtraction]: [tex]\displaystyle v(t) = \int {cos(t)} \, dt - \int {sin(t)} \, dt[/tex]
- [Integral] Trig integration: [tex]\displaystyle v(t) = sin(t) - [-cos(t)] + C[/tex]
- [Velocity Integration] Simplify: [tex]\displaystyle v(t) = sin(t) + cos(t) + C[/tex]
Step 3: Find Function
We need to solve for the entire function, meaning we need to find constant C.
- Substitute in given point [Velocity Integration]: [tex]\displaystyle v(0) = sin(0) + cos(0) + C[/tex]
- [Velocity Integration] Substitute: [tex]\displaystyle 3 = sin(0) + cos(0) + C[/tex]
- [Velocity Integration] Evaluate trig: [tex]\displaystyle 3 = 0 + 1 + C[/tex]
- [Velocity Integration] Add: [tex]\displaystyle 3 = 1 + C[/tex]
- [Velocity Integration] Isolate C [Subtraction Property of Equality]: [tex]\displaystyle 2 = C[/tex]
- [Velocity Integration] Rewrite: [tex]\displaystyle C = 2[/tex]
- [Velocity Function] Substitute in C [Velocity Integration]: [tex]\displaystyle v(t) = sin(t) + cos(t) + 2[/tex]
Topic: Calculus
Unit: Basic Integration
Book: College Calculus 10e