Respuesta :

Answer:

[tex] {m}^{2} [/tex]

Step-by-step explanation:

[tex] \frac{ \sqrt{ {m}^{3} } \times {m}^{ \frac{2}{3} } }{ {m}^{ \frac{1}{6} } } \\ \\ = \frac{ { {m}^{ \frac{3}{2} } } \times {m}^{ \frac{2}{3} } }{ {m}^{ \frac{1}{6} } } \\ \\ = \frac{ {m}^{ \frac{3}{2} + \frac{2}{3} } }{ {m}^{ \frac{1}{6} } } \\ \\ = \frac{ {m}^{ \frac{3}{2} + \frac{2}{3} } }{ {m}^{ \frac{1}{6} } } \\ \\ = \frac{ {m}^{ \frac{9 + 4}{2 \times 3} }}{ {m}^{ \frac{1}{6} } } \\ \\ = \frac{ {m}^{ \frac{13}{6} }}{ {m}^{ \frac{1}{6} } } \\ \\ = {m}^{ \frac{13}{6} - \frac{1}{6} } \\ \\ = {m}^{ \frac{12}{6} } \\ \\ = {m}^{2} [/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE