Respuesta :

Answer:

[tex]AX = 1084.20[/tex]

[tex]BX = 1270.69[/tex]

Step-by-step explanation:

See attachment for complete question

Let the position of the submarine be represented with X

Given

[tex]AB = 1425[/tex]

[tex]\angle A = 59^{\circ}[/tex]

[tex]\angle B = 47^{\circ}[/tex]

First, we calculate angle at X.

[tex]\angle X + \angle A + \angle B = 180[/tex]

[tex]\angle X + 59^{\circ} + 47^{\circ}= 180^{\circ}[/tex]

[tex]\angle X = 180^{\circ} -59^{\circ} - 47^{\circ}[/tex]

[tex]\angle X = 74^{\circ}[/tex]

Solving (a): Distance AX: The distance between ship A and the submarine

To do this, we apply sine formula which states

[tex]\frac{a}{sin\ A} = \frac{b}{sin\ B} = \frac{c}{sin\ C}[/tex]

In this case:

[tex]\frac{AB}{sin\ X} = \frac{AX}{sin\ B}[/tex]

Substitute values for AB, [tex]\angle X[/tex] and [tex]\angle B[/tex]

[tex]\frac{1425}{sin(74^{\circ})} = \frac{AX}{sin(47^{\circ})}[/tex]

Make AX the subject

[tex]AX = \frac{1425}{sin(74^{\circ})} * sin(47^{\circ})[/tex]

[tex]AX = \frac{1425}{0.9613} * 0.7314[/tex]

[tex]AX = \frac{1425 * 0.7314}{0.9613}[/tex]

[tex]AX = \frac{1042.245}{0.9613}[/tex]

[tex]AX = 1084.20[/tex]

Solving (b): Distance BX: The distance between ship B and the submarine

To do this, we apply sine formula which states

In this case:

[tex]\frac{AB}{sin\ X} = \frac{BX}{sin\ A}[/tex]

Substitute values for AB, [tex]\angle X[/tex] and [tex]\angle A[/tex]

[tex]\frac{1425}{sin(74^{\circ})} = \frac{BX}{sin(59^{\circ})}[/tex]

Make BX the subject

[tex]BX = \frac{1425}{sin(74^{\circ})} * sin(59^{\circ})[/tex]

[tex]BX = \frac{1425}{0.9613} * 0.8572[/tex]

[tex]BX = \frac{1425* 0.8572}{0.9613}[/tex]

[tex]BX = \frac{1221.51}{0.9613}[/tex]

[tex]BX = 1270.69[/tex]

Ver imagen MrRoyal

Answer:

first answer: 1084.20

second answer: 1270.69

Step-by-step explanation:

correct on edge 2021

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE