OM is height of AOB, and ON is height of DOC. OM=ON (point O is on line AC). AM=4.2cm, DN=2.6cm. find CD.
(see the picture).
please explain

OM is height of AOB and ON is height of DOC OMON point O is on line AC AM42cm DN26cm find CDsee the pictureplease explain class=

Respuesta :

Answer:

  • 6.8 cm

Step-by-step explanation:

As per picture we have:

  • OM = ON - given
  • ∠AMO≅∠CN) - given
  • ∠AOM≅∠CON - vertical angles

This gives us:

  • ΔAMO ≅ ΔCON

Two sides and included angle congruent - ASA postulate

As per above congruency we have:

  • NC = AM - corresponding sides of congruent triangles

Finding CD:

  • CD = DN + NC
  • CD = 2.6 + 4.2 = 6.8 cm

Answer:

[tex]6.8\ cm[/tex]

Step-by-step explanation:

[tex]We\ are\ given:\\OM\ is\ altitude\ of\ \triangle AOB\\ON\ is\ altitude\ of\ \triangle DOC\\Now,\\Lets\ only\ focus\ on\ the\ interior\ triangles\ inside\ the\ two\ above\ triangles.\\They\ are:\\\triangle OMA\ and\ \triangle ONC.\\\\We\ observe\ that:\\\angle AMO=90[As\ it\ is\ the\ altitude\ of\ \triangle AMO]\\\angle ONC=90[As\ it\ is\ the\ altitude\ of\ \triangle ONC]\\Hence,\\\angle AMO= \angle ONC=90\\\\[/tex]

[tex]We\ also\ observe\ that,\\\angle MOA\ and\ \angle CON\ are\ vertically\ opposite\ as\ they\ are\ one\ pair\\ of\ opposite\ angles\ formed\ by\ the\ intersection\ of\ Lines\ AC\ and\ MN.\\We\ know\ that,\\"When\ two\ straight\ lines\ intersect,\ the\ pairs\ of\ vertically\ opposite\\ angles\ formed\ are\ equal".\\Hence,\\\angle MOA= \angle CON[/tex]

[tex]Lastly,\\We\ are\ given\ that,\\MO=ON[/tex]

[tex]Now,\\The\ ASA\ Congruence\ Criterion\ states\ that' If\ two\ angles\ and\ the\ includ\\ side\ of\ one\ triangle\ is\ equal\ to\ the\ corresponding\ angles\ and\ the\ includ\\ side\ of\ the\ second\ triangle,\ both\ triangles\ are\ congruent'.\\Hence,\\\triangle AMO \cong \triangle CNO.[/tex]

[tex]Hence,\\AM=NC [Corresponding\ Parts\ of\ Congruent\ Triangles]\\We\ can\ observe\ that,\\CD=DN+NC\\Hence,\\DN=2.6\ cm [Given]\\NC=AM=4.2\ cm [Proven]\\Hence,\\DC=2.6+4.2=6.8\ cm[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE