Respuesta :

Answer:

EF = 8.8 cm

Step-by-step explanation:

In the given right angled ΔDEF, DE is the hypotenuse while EF and DF are adjacent sides. So that applying the Pythagoras theorem, we have;

[tex]/hyp/^{2}[/tex] = [tex]/adj1/^{2}[/tex] + [tex]/adj2/^{2}[/tex]

[tex]/DE/^{2}[/tex] = [tex]/EF/^{2}[/tex] + [tex]/DF/^{2}[/tex]

[tex]/16.2/^{2}[/tex] = [tex]/EF/^{2}[/tex] + [tex]/13.6/^{2}[/tex]

262.44 = [tex]/EF/^{2}[/tex] + 184.96

[tex]/EF/^{2}[/tex] = 262.44 - 184.96

          = 77.48

EF = [tex]\sqrt{77.48}[/tex]

     = 8.8023

EF = 8.8 cm

The length of side EF is 8.8 cm.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE