Respuesta :

Answer:

x = 14.4

y = 11.25

Step-by-step explanation:

✔️Find x:

Given that ∆ABC is similar to ∆DEF, it follows that their corresponding sides must be proportional to each other.

Thus:

[tex] \frac{AB}{DE} = \frac{AC}{DF} [/tex]

AB = 15

DE = 12

AC = 18

DF = x

Plug in the values

[tex] \frac{15}{12} = \frac{18}{x} [/tex]

Cross multiply

[tex] 15*x = 18*12 [/tex]

[tex] 15x = 216 [/tex]

Divide both sides by 15

x = 14.4

✔️Find y:

[tex] \frac{AB}{DE} = \frac{BC}{EF} [/tex]

AB = 15

DE = 12

BC = y

EF = 9

Plug in the values

[tex] \frac{15}{12} = \frac{y}{9} [/tex]

Multiply both sides by 9

[tex] \frac{15}{12}*9 = \frac{y}{9}*9 [/tex]

[tex] \frac{15*9}{12} = y [/tex]

[tex] y = 11.25 [/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE