Answer:
x = 14.4
y = 11.25
Step-by-step explanation:
âď¸Find x:
Given that âABC is similar to âDEF, it follows that their corresponding sides must be proportional to each other.
Thus:
[tex] \frac{AB}{DE} = \frac{AC}{DF} [/tex]
AB = 15
DE = 12
AC = 18
DF = x
Plug in the values
[tex] \frac{15}{12} = \frac{18}{x} [/tex]
Cross multiply
[tex] 15*x = 18*12 [/tex]
[tex] 15x = 216 [/tex]
Divide both sides by 15
x = 14.4
âď¸Find y:
[tex] \frac{AB}{DE} = \frac{BC}{EF} [/tex]
AB = 15
DE = 12
BC = y
EF = 9
Plug in the values
[tex] \frac{15}{12} = \frac{y}{9} [/tex]
Multiply both sides by 9
[tex] \frac{15}{12}*9 = \frac{y}{9}*9 [/tex]
[tex] \frac{15*9}{12} = y [/tex]
[tex] y = 11.25 [/tex]