Type the correct answer in each box. Consider this expression.
-4x^2+2x-5(1+x)

What expression is equivalent to the given expression

___x^2+___x+___

Fill in the three blanks.

Respuesta :

Answer:

The expression is equivalent to  [tex]-4\cdot x^{2}+3\cdot x -5[/tex].

Step-by-step explanation:

In this exercise we must transform [tex]-4\cdot x^{2}+2\cdot x -5\cdot (1+x)[/tex] into its standard form, that is a polynomial of the form:

[tex]y = a\cdot x^{2} + b\cdot x + c[/tex] (1)

Where:

[tex]y[/tex] - Dependent variable.

[tex]x[/tex] - Independent variable.

[tex]a[/tex], [tex]b[/tex], [tex]c[/tex] - Coefficients.

Let [tex]y = -4\cdot x^{2}+2\cdot x -5\cdot (1+x)[/tex], now we proceed to convert it into its standard form:

1) [tex]-4\cdot x^{2}+2\cdot x -5\cdot (1+x)[/tex] Given

2) [tex](-4)\cdot x^{2}+2\cdot x + (-5)\cdot (1+x)[/tex] [tex](-a)\cdot b = -a\cdot b[/tex]

3) [tex](-4)\cdot x^{2}+2\cdot x +(-5)\cdot 1 +(-5)\cdot x[/tex] Distributive property

4) [tex](-4)\cdot x^{2}+[5+(-2)]\cdot x -5[/tex] [tex](-a)\cdot b = -a\cdot b[/tex]/Commutative and distributive properties

5) [tex]-4\cdot x^{2}+3\cdot x -5[/tex] [tex](-a)\cdot b = -a\cdot b[/tex]/Definition of subtraction/Result

The expression is equivalent to  [tex]-4\cdot x^{2}+3\cdot x -5[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE