the perimeter of the circular base of a cone is 132 cm and its vertical height is 28 cm find the curved surface area total surface area and volume of the cone​

Respuesta :

Answer:

i. Curved surface area = 2310 [tex]cm^{2}[/tex]

ii. Total surface area = 3696 [tex]cm^{2}[/tex]

iii. volume = 12936 [tex]cm^{3}[/tex]

Step-by-step explanation:

Perimeter of the circular base = circumference of the circle = 132 cm

circumference of a circle = 2[tex]\pi[/tex]r

132 = 2[tex]\pi[/tex]r

r = [tex]\frac{132}{2\pi }[/tex]

 = [tex]\frac{66}{\pi }[/tex]

r = 66 x [tex]\frac{7}{22}[/tex]

 = 3 x 7

 = 21

radius = 21 cm

vertical height, h = 28 cm

Thus applying the Pythagoras theorem,

[tex]l^{2}[/tex] = [tex]h^{2}[/tex] + [tex]r^{2}[/tex]

  = [tex]28^{2}[/tex] + [tex]21^{2}[/tex]

  = 784 + 441

  = 1225

l = [tex]\sqrt{1225}[/tex]

l = 35 cm

The slant height is 35 cm.

i. Curved surface area = [tex]\pi[/tex]rl

                           = [tex]\frac{22}{7}[/tex] x 21 x 35

                           = 22 x 3 x 35

                           = 2310

curved surface area of the cone is 2310 [tex]cm^{2}[/tex].

ii. Total surface area = [tex]\pi r^{2}[/tex] + [tex]\pi[/tex]rl

                                  = [tex]\pi[/tex]r(r + l)

                                  = [tex]\frac{22}{7}[/tex] x 21 (21 + 35)

                                  = 22 x 3 x 56

                                  = 3696

The total surface area of the cone is 3696 [tex]cm^{2}[/tex].

iii. volume of a cone = [tex]\frac{1}{3}[/tex][tex]\pi r^{2}[/tex]h

                                  =  [tex]\frac{1}{3}[/tex] x [tex]\frac{22}{7}[/tex] x [tex]21^{2}[/tex] x 28

                                   = 12936

The volume of the cone is 12936 [tex]cm^{3}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE