Respuesta :

Given:

[tex]x^{\frac{5}{4}}=100[/tex]

[tex]x=\sqrt[a]{100}^b[/tex]

To find:

The values of a and b.

Solution:

We have,

[tex]x^{\frac{5}{4}}=100[/tex]

It can be written as

[tex]x^{\frac{5}{4}\times \frac{4}{5}}=100^{\frac{4}{5}}[/tex]

[tex]x^{1}=\left[100^{\frac{1}{5}}\right]^4[/tex]       [tex][\because a^{mn}=(a^m)^n][/tex]

[tex]x=\left[\sqrt[5]{100}\right]^4[/tex]       [tex][\because a^{\frac{1}{n}}=\sqrt[n]{a}][/tex]

[tex]x=\sqrt[5]{100}^4[/tex]

On comparing this with [tex]x=\sqrt[a]{100}^b[/tex], we get

[tex]a=5[/tex]

[tex]b=4[/tex]

Therefore, the value of a is 5 and value of b is 4.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE