Respuesta :

Given:

The equation is

[tex]5^x=55[/tex]

To find:

The value of x.

Solution:

We have,

[tex]5^x=55[/tex]

Taking log both sides, we get

[tex]\log (5^x)=\log (55)[/tex]

[tex]x\log (5)=\log (55)[/tex]        [tex][\because \log x^n=n\log x][/tex]

[tex]x=\dfrac{\log (55)}{\log (5)}[/tex]

Using the log values, we get

[tex]x=\dfrac{1.740}{0.699}[/tex]

[tex]x=2.48927[/tex]

[tex]x\approx 2.49[/tex]

Therefore, the correct option is B.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE