Let O" be a point on CO so that CO" = C'o'. Let P" be the point on CP so that the dilation of P is
represented by P".
Which of the following statements is true?

A. COP=C'O'P
B. CP=CP"
C. C'O'P' is a glide reflection of COP, whereas CO"P"=C'O'P
D. CO"P" is a dilation of COP with center C and a scale factor r = C'O'/CO = co'/co

Let O be a point on CO so that CO Co Let P be the point on CP so that the dilation of P is represented by P Which of the following statements is true A COPCOP class=

Respuesta :

Answer:

CO”P” is a dilation of COP with center C and scale factor r =...

Step-by-step explanation:

I did this question and got it right... wanted to help

The triangles ΔCOP and ΔCO''P'' can be shown to be similar when OP is

equal to O''P''.

  • The true statement is option D. ΔCO''P'' is a dilation of ΔCOP with center C and a scale factor, r = [tex]\underline{\dfrac{C'O'}{CO} = \dfrac{CO''}{CO}}}[/tex]

Reasons:

The given parameters are;

∠C ≅ ∠C'

∠POC ≅ ∠P'O'C'

The point O'' is on [tex]\overline{CO}[/tex]

CO'' = C'O'

The point P'' is on [tex]\overline{CP}[/tex]

Required:

The true statement from among the given statement

Solution:

Statement [tex]{}[/tex]                             Reason

∠C ≅ ∠C' [tex]{}[/tex]                               Given

∠COP ≅ ∠C'O'P' [tex]{}[/tex]                   Given

ΔCOP ~ ΔC'O'P'  [tex]{}[/tex]                   AA similarity postulate

ΔC'O'P' is a dilation  ΔCOP   [tex]{}[/tex] Similar but not congruent triangles

CO'' = C'O'   [tex]{}[/tex]                           Given

CO'' ≅ C'O'    [tex]{}[/tex]                          Definition of congruency

P'' is a dilation of P    [tex]{}[/tex]             Given

Therefore, where CP'' = C'P', we have;

ΔCO''P'' ≅ ΔC'O'P'    [tex]{}[/tex]              SAS rule of congruency

ΔCO''P'' =  ΔC'O'P'    [tex]{}[/tex]              Definition of congruency

ΔCOP ~ ΔCO''P''     [tex]{}[/tex]               Transitive property

ΔCO''P'' is a dilation  ΔCOP   [tex]{}[/tex] Similar but not congruent triangles

Which gives;

[tex]\mathrm{\Delta CO''P'' \ is \ a \ dilation \ of \ \Delta COP \ with \ center \ C \ and \ scale \ factor \ r = \dfrac{C'O'}{CO} = \dfrac{CO''}{CO}}[/tex]

Learn more here:

https://brainly.com/question/1616371

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE