Answer:
h = 5x + 3
Step-by-step explanation:
I believe the volume should be [tex]5x^{3} + 13x^{2} + 6x[/tex] in the question. Based on the correction:
[tex]V = 5x^{3} + 13x^{2} + 6x\\A = x^{2} + 2x\\V = A.h\\h = \frac{V}{A} = \frac{5x^{3} + 13x^{2} + 6x}{x^{2} + 2x} = \frac{x(5x^{2}+13x+6}{x(x+2)}=\frac{5x^{2}+13x+6}{x+2} = \frac{(x+2)(5x+3)}{x+2} = 5x+3[/tex]