Respuesta :

Answer:

[tex]\frac{dy}{dx}[/tex] = 8(2x + 3)³

Step-by-step explanation:

Differentiate using the chain rule

Given

y = f(g(x)) , then

[tex]\frac{dy}{dx}[/tex] = f'(g(x)) × g'(x)

Here

f(x) = [tex](2x+3)^{4}[/tex] ⇒ f'(x) = 4(2x + 3)³

g(x) = 2x + 3 ⇒ g'(x) = 2

Thus

[tex]\frac{dy}{dx}[/tex] = 4(2x + 3)³ × 2

    = 8(2x + 3)³

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE