a chuck wagon with an initial velocity of 4 m/s and a mass of 35 kg gets a push with 350 joules of force. what is the wagon's final velocity?

Respuesta :

Answer:

the final velocity of the wagon is 6 m/s.

Explanation:

Given;

initial velocity of the wagon, u = 4 m/s

mass of the wagon, m = 35 kg

energy applied to the wagon, E = 350 J

The final velocity of the wagon is calculated as;

E = ¹/₂m(v² - u²)

[tex]m(v^2-u^2) = 2E\\\\v^2-u^2 = \frac{2E}{m} \\\\v^2 = \frac{2E}{m} + u^2\\\\v = \sqrt{\frac{2E}{m} + u^2} \\\\v = \sqrt{\frac{2(350)}{35} + (4)^2}\\\\v = 6 \ m/s[/tex]

Therefore, the final velocity of the wagon is 6 m/s.

The wagon's final velocity will be "6 m/s".

Given:

Wagon's initial velocity,

  • u = 4 m/s

Mass,

  • m = 35 kg

Applied energy,

  • E = 350 J

We know,

→ [tex]E = \frac{1}{2} m(v^2-u^2)[/tex]

→ [tex]m(v^2-u^2) = 2E[/tex]

or,

→      [tex]v^2-u^2 = \frac{2E}{m}[/tex]

→               [tex]v= \sqrt{\frac{2E}{m} +u^2}[/tex]

By substituting the values,

                    [tex]= \sqrt{\frac{2(350)}{35}+(4)^2 }[/tex]

                    [tex]= 6 m/s[/tex]

Thus the answer above is correct.  

Learn more about mass here:

https://brainly.com/question/22256985

Ver imagen Cricetus
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE