Respuesta :

Answer:

[tex]\sin d = \frac{4}{7}[/tex] ; [tex]\sin e = \frac{\sqrt{33} }{7}[/tex]

[tex]\cos d = \frac{\sqrt{33} }{7}[/tex] ; [tex]\cos e = \frac{4}{7}[/tex]

[tex]\tan d = \frac{4}{\sqrt{33} }[/tex] ; [tex]\tan e = \frac{\sqrt{33} }{4}[/tex]

Step-by-step explanation:

For a right angled triangle with one of its angle α (alpha) :-

  • [tex]\sin \alpha = \frac{Side \: opposite \: to \: \alpha }{Hypotenuse \: of \: the \: triangle}[/tex]
  • [tex]\cos \alpha = \frac{Side \: adjacent \: to \: \alpha }{Hypotenuse \: of \: the \: triangle}[/tex]
  • [tex]\tan \alpha = \frac{Side \: opposite \: to \: \alpha }{Side \: adjacent \: to \: \alpha }[/tex]

__________________________________________________

According to the question ,

1) When α (alpha) = d

  • [tex]\sin d = \frac{4}{7}[/tex]
  • [tex]\cos d = \frac{\sqrt{33} }{7}[/tex]
  • [tex]\tan d = \frac{4}{\sqrt{33} }[/tex]

2) When α (alpha) = e

  • [tex]\sin e = \frac{\sqrt{33} }{7}[/tex]
  • [tex]\cos e = \frac{4}{7}[/tex]
  • [tex]\tan e = \frac{\sqrt{33} }{4}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE