Question 3)
Given
The point (1, -5)
The slope m = -5/6
Using the point-slope form of the equation of a line
[tex]y-y_1=m\left(x-x_1\right)[/tex]
where
In our case:
substituting the values m = -5/6 and the point (1, -5) in the point-slope form of the equation of the line
[tex]y-y_1=m\left(x-x_1\right)[/tex]
[tex]y-\left(-5\right)=-\frac{5}{6}\left(x-1\right)[/tex]
[tex]y+5=-\frac{5}{6}\left(x-1\right)[/tex]
Thus, the point-slope form of the equation of the line is:
[tex]y+5=-\frac{5}{6}\left(x-1\right)[/tex]
Question 4)
Given
The point (-1, 5)
The slope m = -7/2
In our case:
substituting the values m = -7/2 and the point (-1, 5) in the point-slope form of the equation of the line
[tex]y-y_1=m\left(x-x_1\right)[/tex]
[tex]y-5=-\frac{7}{2}\left(x-\left(-1\right)\right)[/tex]
[tex]y-5=-\frac{7}{2}\left(x+1\right)[/tex]
Thus, the point-slope form of the equation of the line is:
[tex]y-5=-\frac{7}{2}\left(x+1\right)[/tex]