Answer:
The answer is below
Explanation:
The initial velocity = u = 82.5 km/h = 22.92 m/s, the final velocity = 32.5 km/h = 9.03 m/s, diameter = 91.55 cm = 0.9144 cm
radius (r) = diameter / 2 = 0.9144 / 2= 0.4572 m
a) Initial angular velocity ([tex]\omega_o[/tex]) = u /r = 22.92 / 0.4572 = 50.13 rad/s, final velocity (ω) = v / r = 9.03 / 0.4592 = 19.67 rad / s
θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
angular acceleration (α) is:
[tex]\omega^2=\omega_o^2+2\alpha \theta\\\\19.67^2-50.13^2=2\alpha(272.9)\\\\19.67^2=50.13^2+2\alpha(272.9)\\\\2\alpha(272.9)=-2126.108\\\\\alpha=-3.89\ rad/s^2\\\\[/tex]
b)
[tex]\omega=\omega_o+\alpha t\\\\19.67=50.13+(-3.89t)\\\\3.89t=50.13-19..67\\\\3.89t=30.46\\\\t=7.83\ s[/tex]
c) θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
a) When it stops, the final angular velocity is 0. Hence:
[tex]\omega^2=\omega_o^2+2\alpha \theta\\\\0=50.13^2+2(-3.89)\theta\\\\2(3.89)\theta=50.13^2\\\\2(3.89)\theta=2513\\\\\theta=323\ rad\\\\revolutions=\frac{\theta}{2\pi r}=\frac{323}{2\pi(0.4572)} =112.4\ rev[/tex]
θ = 323 rad