Respuesta :
Answer:
[tex]\displaystyle m=-2[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Slope Formula: [tex]\displaystyle m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Step-by-step explanation:
Step 1: Define
Point (0, 0)
Point (5, -10)
Step 2: Find slope m
Simply plug in the 2 coordinates into the slope formula to find slope m. Slope and gradient is the same.
- Substitute in points [SF]: [tex]\displaystyle m=\frac{-10-0}{5-0}[/tex]
- [Fraction] Subtract: [tex]\displaystyle m=\frac{-10}{5}[/tex]
- [Fraction] Divide: [tex]\displaystyle m=-2[/tex]
Answer:
Let "m" be the slope of the line passing through the point.
[tex]m = \frac{y_ 2 - y_1}{x_ 2 - x_1 } = \frac{( - 10 - 0)}{(5 - 0)} = \frac{ - 10}{5} = \boxed{- 2 }[/tex]
-2 is the gradient of the line that passes through the points (0,0) and (5,-10).