Respuesta :

Answer:

[tex]y= -\frac{2}{3}x + 12[/tex] --- (1)

[tex]y = -2x -6[/tex] --- (2)

Step-by-step explanation:

Solving (a): Line Equation

[tex](x_1,y_1) = (3,10)[/tex]

[tex](x_2,y_2) = (6,8)[/tex]

First, calculate the slope (m)

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{8 - 10}{6 -3}[/tex]

[tex]m = \frac{-2}{3}[/tex]

[tex]m = -\frac{2}{3}[/tex]

The line equation is then calculated using:

[tex]y - y_1 = m(x - x_1)[/tex] --- slope intercept formula

This gives:

[tex]y - 10 = -\frac{2}{3}(x - 3)[/tex]

[tex]y - 10 = -\frac{2}{3}x + 2[/tex]

Solve for y

[tex]y= -\frac{2}{3}x + 2+10[/tex]

[tex]y= -\frac{2}{3}x + 12[/tex]

Solving (b): Line Equation

[tex](x_1,y_1) = (2,-10)[/tex]

[tex](x_2,y_2) = (-4,2)[/tex]

Calculate the slope (m)

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{2 -(- 10)}{-4 -2}[/tex]

[tex]m = \frac{2 + 10}{-6}[/tex]

[tex]m = \frac{12}{-6}[/tex]

[tex]m=-2[/tex]

The line equation is then calculated using:

[tex]y - y_1 = m(x - x_1)[/tex]

This gives:

[tex]y - (-10) = -2(x - 2)[/tex]

[tex]y +10 = -2(x - 2)[/tex]

[tex]y +10 = -2x +4[/tex]

Solve for y

[tex]y = -2x +4-10[/tex]

[tex]y = -2x -6[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE