A piece of paper is to display ~128~ 128 space, 128, space square inches of text. If there are to be one-inch margins on both sides and two-inch margins at the bottom and top, what are the dimensions of the smallest piece of paper (by area) that can be used? Choose 1 answer:

Respuesta :

Answer:

The dimensions of the smallest piece that can be used are: 10 by 20 and the area is 200 square inches

Step-by-step explanation:

We have that:

[tex]Area = 128[/tex]

Let the dimension of the paper be x and y;

Such that:

[tex]Length = x[/tex]

[tex]Width = y[/tex]

So:

[tex]Area = x * y[/tex]

Substitute 128 for Area

[tex]128 = x * y[/tex]

Make x the subject

[tex]x = \frac{128}{y}[/tex]

When 1 inch margin is at top and bottom

The length becomes:

[tex]Length = x + 1 + 1[/tex]

[tex]Length = x + 2[/tex]

When 2 inch margin is at both sides

The width becomes:

[tex]Width = y + 2 + 2[/tex]

[tex]Width = y + 4[/tex]

The New Area (A) is then calculated as:

[tex]A = (x + 2) * (y + 4)[/tex]

Substitute [tex]\frac{128}{y}[/tex] for x

[tex]A = (\frac{128}{y} + 2) * (y + 4)[/tex]

Open Brackets

[tex]A = 128 + \frac{512}{y} + 2y + 8[/tex]

Collect Like Terms

[tex]A = \frac{512}{y} + 2y + 8+128[/tex]

[tex]A = \frac{512}{y} + 2y + 136[/tex]

[tex]A= 512y^{-1} + 2y + 136[/tex]

To calculate the smallest possible value of y, we have to apply calculus.

Different A with respect to y

[tex]A' = -512y^{-2} + 2[/tex]

Set

[tex]A' = 0[/tex]

This gives:

[tex]0 = -512y^{-2} + 2[/tex]

Collect Like Terms

[tex]512y^{-2} = 2[/tex]

Multiply through by [tex]y^2[/tex]

[tex]y^2 * 512y^{-2} = 2 * y^2[/tex]

[tex]512 = 2y^2[/tex]

Divide through by 2

[tex]256=y^2[/tex]

Take square roots of both sides

[tex]\sqrt{256=y^2[/tex]

[tex]16=y[/tex]

[tex]y = 16[/tex]

Recall that:

[tex]x = \frac{128}{y}[/tex]

[tex]x = \frac{128}{16}[/tex]

[tex]x = 8[/tex]

Recall that the new dimensions are:

[tex]Length = x + 2[/tex]

[tex]Width = y + 4[/tex]

So:

[tex]Length = 8 + 2[/tex]

[tex]Length = 10[/tex]

[tex]Width = 16 + 4[/tex]

[tex]Width = 20[/tex]

To double-check;

Differentiate A'

[tex]A' = -512y^{-2} + 2[/tex]

[tex]A" = -2 * -512y^{-3}[/tex]

[tex]A" = 1024y^{-3}[/tex]

[tex]A" = \frac{1024}{y^3}[/tex]

The above value is:

[tex]A" = \frac{1024}{y^3} > 0[/tex]

This means that the calculated values are at minimum.

Hence, the dimensions of the smallest piece that can be used are: 10 by 20 and the area is 200 square inches

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE