The acceleration of a particle is defined by the relation a= -k/x. It has been experimentally determined that v=15 ft/s when x=0.6 ft and that v=9 ft/s when x=1.2 ft. Determine (a) velocity of particle when x=1.5 ft.(b)Position of particle at which velocity is zero.

Respuesta :

Answer:

(a)  5.89 ft/s

(b) x= 1.77 ft

Explanation:

Given that the acceleration of the particle, a=-k/x

As [tex]a=v\frac{dv}{dx}[/tex] , so

[tex]v\frac{dv}{dx}=-\frac{k}{x} \\\\\Rightarrow vdv=-k\frac{dx}{x} \\\\[/tex]

On integrating both sides, we have

[tex]\frac{v^2}{2}=-k\ln(x) + C\cdots(i)[/tex]

where C is a constant.

At x=0.6 ft, v=15 ft/s

From equation (i)

[tex]\frac{15^2}{2}=-k\ln(0.6) + C \\\\\Rightarrow C=\frac{225}{2} + k\ln(0.6) \cdots(ii)[/tex]

Similarly, at x=1.2 ft, v=9 ft/s

[tex]\frac{9^2}{2}=-k\ln(1.2) + C \\\\\Rightarrow \frac{81}{2} = -k\ln(1.2) + \frac{225}{2} + k\ln(0.6) \\\\\Rightarrow k(\ln(1.2) - \ln(0.6))= \frac{225}{2}-\frac{81}{2} \\\\\Rightarrow k\ln(1.2/0.6)= 72 \\\\\Rightarrow k = 72 / ln(2)=103.87[/tex]

From equation (ii),

[tex]C=\frac{225}{2} + 103.87 \times \ln(0.6) \\\\\Rightarrow C=112.5-53.06=59.44[/tex]

Putting the value of k and C in the equation (i), we have

[tex]\frac{v^2}{2}=-103.87\ln(x) + 59.44 \\\\\Rightarrow v^2=-207.74\ln(x) + 118.88 \\\\\Rightarrow v = \sqrt{-207.74\ln(x) + 118.88}[/tex]

(a) At x=1.5 ft, the velocity of the particle is

[tex]\Rightarrow v = \sqrt{-207.74\ln(1.5) + 118.88} \\\\[/tex]

[tex]\Rightarrow v = 5.89[/tex] ft/s

At x=1.5 ft, the velocity of the particle is 5.89 ft/s.

(b) For v=0, we have

[tex]\Rightarrow 0 = \sqrt{-207.74\ln(x) + 118.88} \\\\\Rightarrow \ln(x) = -118.88/-207.74=0.572 \\\\\Rightarrow x= e^{0.572} \\\\[/tex]

[tex]\Rightarrow x= 1.77[/tex] ft

At x= 1.77 ft the velocity of the particle is zero.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE