Respuesta :

Find tan(12) and sin ((5pi)/12)
Answer: ±(2±√3)and±2+√32

Explanation:

Call tan ((5pi/12) = t. 
Use trig identity: tan2a=2tana1−tan2a
tan(10π12)=tan(6)=−1√3=2t1−t2
t2−2√3t−1=0

D=d2=b2−4ac=12+4=16--> d=±4

t=tan(12)=2√32±42=2±√3

Call sin(12)=siny
Use trig identity: cos2a=1−2sin2a
cos(10π12)=cos(6)=√32=1−2sin2y
sin2y=2+√34
siny=sin(12)2+√32

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE