Respuesta :

Answer:

[tex]f^{-1}(x)=\sqrt{x+16}[/tex]

Step-by-step explanation:

[tex]f(x)=x^2-16[/tex]

The inverse of the function [tex]f[/tex] is [tex]f^{-1}[/tex]

The Range of the inverse function [tex]f[/tex] will be the Domain of the function [tex]f[/tex]

[tex]Ran(f^{-1}) = [0, \infty)[/tex]

The inverse of

[tex]f(x)=x^2-16[/tex]

is

[tex]f^{-1}(x)=\sqrt{x+16}[/tex]

Note that if the domain of the function [tex]f[/tex] where all the Real numbers, the inverse would be

[tex]f^{-1}(x)=\pm\sqrt{x+16}[/tex]

Answer:

Inverse of [tex]f(x)=x^2-16[/tex] is [tex]f^{-1}(x)=\sqrt{x+16}[/tex]

Option A is correct option.

Step-by-step explanation:

We need to find inverse of [tex]f(x)=x^2-16[/tex]

For finding inverse replace f(x) with y

[tex]y=x^2-16[/tex]

Now, solve for x

Adding 16 on both sides

[tex]y+16=x^2-16+16\\y+16=x^2\\=> x^2=y+16[/tex]

Taking square root on both sides:

[tex]x^2=y+16\\\sqrt{x^2} =\sqrt{y+16} \\x=\sqrt{y+16}[/tex]

Now replace x with f^{-1}(x) and y with x

[tex]f^{-1}(x)=\sqrt{x+16}[/tex]

So, inverse of [tex]f(x)=x^2-16[/tex] is [tex]f^{-1}(x)=\sqrt{x+16}[/tex]

Option A is correct option.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE