Given the matrices: 1 2 A= 1 -1 2 1 1 B= 3 4 Calculate AB: C11 C12 [2.1] х 1 2 3 4 C21 C22 C11 = C12 = -2 C22 - C215 DONE​

Given the matrices 1 2 A 1 1 2 1 1 B 3 4 Calculate AB C11 C12 21 х 1 2 3 4 C21 C22 C11 C12 2 C22 C215 DONE class=

Respuesta :

Answer:

[tex]\:c_{11}=-2,\:\:\:c_{12}=-2[/tex]

[tex]\:c_{21}=5,\:\:\:c_{22}=8[/tex]

Step-by-step explanation:

Given the matrices

[tex]A=\begin{pmatrix}1&-1\\ 2&1\end{pmatrix}[/tex]

[tex]B=\begin{pmatrix}1&2\\ \:3&4\end{pmatrix}[/tex]

Calculating AB:

[tex]\begin{pmatrix}1&-1\\ \:\:2&1\end{pmatrix}\times \:\begin{pmatrix}1&2\\ \:\:3&4\end{pmatrix}=\begin{pmatrix}c_{11}&c_{12}\\ \:\:\:c_{21}&c_{22}\end{pmatrix}[/tex]

Multiply the rows of the first matrix by the columns of the second matrix

                                   [tex]=\begin{pmatrix}1\cdot \:1+\left(-1\right)\cdot \:3&1\cdot \:2+\left(-1\right)\cdot \:4\\ 2\cdot \:1+1\cdot \:3&2\cdot \:2+1\cdot \:4\end{pmatrix}[/tex]

                                   [tex]=\begin{pmatrix}-2&-2\\ 5&8\end{pmatrix}[/tex]

Hence,

[tex]\begin{pmatrix}c_{11}&c_{12}\\ \:\:\:c_{21}&c_{22}\end{pmatrix}=\begin{pmatrix}-2&-2\\ \:5&8\end{pmatrix}[/tex]

Therefore,

[tex]\:c_{11}=-2,\:\:\:c_{12}=-2[/tex]

[tex]\:c_{21}=5,\:\:\:c_{22}=8[/tex]

Answer:

c11= -2

c22= 8

d11= 5

d21=11

Are the products equal? Does AB = BA? NO

Step-by-step explanation:

on edge!

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE