The equation of the circle is [tex]\mathbf{(x +1)^2 + (y -7)^2 =100}[/tex]
The standard form of the equation of a circle is:
[tex]\mathbf{(x -a)^2 + (y -b)^2 =r^2}[/tex]
From the question, we have:
[tex]\mathbf{(a,b) = (-1,7)}[/tex]
[tex]\mathbf{r = \frac{1}{2} \times 20 = 10}[/tex]
So, the equation becomes
[tex]\mathbf{(x -a)^2 + (y -b)^2 =r^2}[/tex]
Substitute values for (a), (b) and (r)
[tex]\mathbf{(x +1)^2 + (y -7)^2 =10^2}[/tex]
Express 10^2 as 100
[tex]\mathbf{(x +1)^2 + (y -7)^2 =100}[/tex]
Hence, the equation of the circle is [tex]\mathbf{(x +1)^2 + (y -7)^2 =100}[/tex]
Read more about equations of circles at:
https://brainly.com/question/23988015