Respuesta :

The value of (a) and (b) for the hyperbola are [tex]\sqrt 3[/tex] and 2

The equation of the hyperbola is given as:

[tex]\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1[/tex]

The curve of the graph passes through points (0,2) and (-4,3).

So, we have:

[tex]\frac{2^2}{b^2} - \frac{0^2}{a^2} = 1[/tex] and [tex]\frac{(-4)^2}{b^2} - \frac{3^2}{a^2} = 1[/tex]

[tex]\frac{2^2}{b^2} - \frac{0^2}{a^2} = 1[/tex] becomes

[tex]\frac{4}{b^2} = 1[/tex]

Cross multiply

[tex]b^2 = 4[/tex]

Take positive square root of both sides

[tex]b = 2[/tex]

[tex]\frac{(-4)^2}{b^2} - \frac{3^2}{a^2} = 1[/tex] becomes

[tex]\frac{(-4)^2}{2^2} - \frac{3^2}{a^2} = 1[/tex]

[tex]\frac{(-4)^2}{4} - \frac{9}{a^2} = 1[/tex]

[tex]4 - \frac{9}{a^2} = 1[/tex]

Collect like terms

[tex]- \frac{9}{a^2} = -3[/tex]

Cross multiply

[tex]-3a^2 = -9[/tex]

Divide both sides by -3

[tex]a^2 = 3[/tex]

Take square roots of both sides

[tex]a = \sqrt 3[/tex]

Hence, the value of (a) and (b) for the hyperbola are [tex]\sqrt 3[/tex] and 2

Read more about hyperbolas at:

https://brainly.com/question/14503968

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE