Respuesta :

Answer:

The table shows an exponential function

Step-by-step explanation:

Linear vs Exponential Functions

A linear function is written as:

[tex]y=mx+b[/tex]

where m and b are constants.

If a table contains a linear function, then for each pair of ordered pairs (x1,y1) and (x2,y2), the value of m must be constant.

The slope can be calculated as:

[tex]\displaystyle m=\frac{y_2-y_1}{x_2-x_1}[/tex]

An exponential function is written as:

[tex]y=y_o.r^x[/tex]

Where r is the ratio and yo is a constant.

If a table contains an exponential function, for two ordered pairs (x1,y1) and (x2,y2), the value of r must be constant.

The ratio can be calculated as:

[tex]\displaystyle r=\sqrt[x2-x1]{\frac{y2}{y1}}[/tex]

Calculate the slope for (0,4) and (1,2):

[tex]\displaystyle m=\frac{2-4}{1-0}=-2[/tex]

Calculate the slope for (1,2) and (2,1):

[tex]\displaystyle m=\frac{1-2}{2-1}=-1[/tex]

Since the slope is not the same, the function is not linear.

Now calculate the ratio for (0,4) and (1,2)

[tex]\displaystyle r=\sqrt[1-0]{\frac{1}{2}}[/tex]

The radical of index 1 is simply equal to its argument:

[tex]\displaystyle r=\frac{1}{2}[/tex]

Now calculate the ratio for (0,4) and (2,1)

[tex]\displaystyle r=\sqrt[2-0]{\frac{1}{4}}[/tex]

[tex]\displaystyle r=\sqrt{\frac{1}{4}}[/tex]

[tex]\displaystyle r=\frac{1}{2}[/tex]

Testing other points we'll find the same ratio, thus the table is an exponential function

Like ya cuttt g..........
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE