Answer:
Solving [tex]6(2 - x)<-4x + 2[/tex] we get [tex]\mathbf{x>5}[/tex]
Step-by-step explanation:
We need to find solution of [tex]6(2 - x)<-4x + 2[/tex]
Solving the inequality:
[tex]6(2 - x)<-4x + 2[/tex]
Multiply 6 with terms inside the bracket
[tex]12-6x<-4x+2[/tex]
Subtracting 12 on both sides
[tex]12-6x-12<-4x+2-12\\-6x<-4x-10[/tex]
Adding 4x on both sides
[tex]-6x+4x<-4x-10+4x\\-2x<-10[/tex]
Divide both sides by -2 and the inequality will be reversed i.e < will be changes to >
[tex]\frac{-2x}{-2}>\frac{-10}{-2}\\\mathbf{x>5}[/tex]
So, after solving [tex]6(2 - x)<-4x + 2[/tex] we get [tex]\mathbf{x>5}[/tex]