Respuesta :

Answer:

Solving [tex]6(2 - x)<-4x + 2[/tex] we get [tex]\mathbf{x>5}[/tex]

Step-by-step explanation:

We need to find solution of [tex]6(2 - x)<-4x + 2[/tex]

Solving the inequality:

[tex]6(2 - x)<-4x + 2[/tex]

Multiply 6 with terms inside the bracket

[tex]12-6x<-4x+2[/tex]

Subtracting 12 on both sides

[tex]12-6x-12<-4x+2-12\\-6x<-4x-10[/tex]

Adding 4x on both sides

[tex]-6x+4x<-4x-10+4x\\-2x<-10[/tex]

Divide both sides by -2 and the inequality will be reversed i.e < will be changes to >

[tex]\frac{-2x}{-2}>\frac{-10}{-2}\\\mathbf{x>5}[/tex]

So, after solving [tex]6(2 - x)<-4x + 2[/tex] we get [tex]\mathbf{x>5}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE