Respuesta :
Answer:
1/8
Step-by-step explanation:
Given the expression
[tex]\frac{(2^3)(2)^4}{2^{10}} \\[/tex]
Using the following laws of indices;
[tex]\frac{a^m}{a^n} = a^{m-n}\\a^m \times a^n = a^{m+n}[/tex]
The expression becomes;
Step 1: Multiplication rule
[tex]=\frac{(2^3)(2)^4}{2^{10}} \\= \frac{2^{3+4}}{2^{10}}\\= \frac{2^7}{2^{10}}[/tex]
Using the division rule of exponent (Quotient of powers);
[tex]= \frac{2^7}{2^{10}} \\= 2^{7-10}\\= 2^{-3}\\also \ a^{-m} = \frac{1}{a^m}\\ 2^{-3}= \frac{1}{2^3}\\\frac{1}{2^3} = \frac{1}{8}[/tex]
Hence the result of the expression is 1/8
Answer:
(A) PRODUCT OF POWERS
(B) POWER OF A POWER
(C) QUOTIENT OF POWERS
Step-by-step explanation:
it is correct