contestada

A particle moves on the hyperbola xy=15 for time t≥0 seconds. At a certain instant, x=3 and dx/dt=6. Which of the following is true about y at this instant?

Respuesta :

Answer:

[tex]y[/tex] is decreasing by 10 units per second.

Step-by-step explanation:

Given information:

The particle moves on the hyperbola [tex]xy=15[/tex]

Time [tex]t\geq 0[/tex]

Now at a certain instant , [tex]x=3[/tex] and [tex]\frac{dx}{dt} = 6[/tex]

Now, Differentiating [tex]xy=15[/tex] with respect to [tex]t[/tex]

We get:

[tex]x.\frac{dy}{dt} +y.\frac{dx}{dt} =0[/tex]

Now substitute the values in above equation:

[tex]3\frac{dy}{dt}+ 5 \times 6=0[/tex]

[tex]3 \frac{dy}{dt}=-30\\\frac{dy}{dt} =-10[/tex]

The negative sign indicates that [tex]y[/tex] is decreasing by 10 units per second.

For more information visit:

https://brainly.com/question/1618526?referrer=searchResults

The particle follows hyperbolic path. The value of  [tex]y[/tex] is decreasing at the rate of [tex]10[/tex] units per seconds.

Given: A particle moves on the hyperbola [tex]xy=15[/tex] for time [tex]t\geq0[/tex] seconds. At a certain instant, [tex]x=3[/tex] and [tex]dx/dt=6[/tex].

According to question,

hyperbola curve is [tex]xy=15[/tex].

Differentiating the curve w.r.t [tex]t[/tex] we get:

[tex]x\cdot \frac{dy}{dt}+y\cdot\frac{dx}{dt}=0[/tex]

Now substituting the values are  [tex]x=3[/tex] and [tex]dx/dt=6[/tex].

[tex]3\cdot \frac{dy}{dt}+5\times6=0[/tex]

                [tex]\frac{dy}{dt}=\frac{-30}{3}\\\frac{dy}{dt}=-10[/tex]

Therefore, [tex]y[/tex] is decreasing [tex]10[/tex] units per seconds.

Learn more about differentiation here:

https://brainly.com/question/24062595?referrer=searchResults

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE