If 6000 dollars is invested in a bank account at an interest rate of 9 per cent per
year,
Find the amount in the bank after 8 years if interest is compounded annually:
Find the amount in the bank after 8 years if interest is compounded quarterly:
Find the amount in the bank after 8 years if interest is compounded monthly:
Finally, find the amount in the bank after 8 years if interest is compounded
continuously:

Respuesta :

Answer:

(1) $11955.38

(2) $12228.62

(3) $12293.527

(4) $12326.6

Step-by-step explanation:

Compound interest is given by

A= P( 1 + r/n)^n*t

A= Final amount

P = initial amount = 6000

r = interest rate  = 9% = 0.09

n = number of times interest applied per time period

t = number of time periods elapsed

(1) Compounded annually

    n = 1 , t = 8

    A = 6000( 1+ 0.09/1) ^1*8

     A = 6000( 1.09) ^8 = $11955.38

(2) compounded quarterly

    n = 4 , t = 8

A = 6000( 1+ 0.09/4) ^4*8

     = 6000( 1.0225)^32 = $12228.62

(3) compounded monthly

     n = 12 , t = 8

 A = 6000( 1+0.09/12)^12*8 = $12293.527

(4) compounded continuously

       A = P* e^rt

      r = 0.09 , t = 8

           =  6000* e^0.09*8

           = 6000* e^0.72 = $12326.6

The Amount according to the given scenario will be:

(1) $11955.38

(2) $12228.62

(3) $12293.527

(4) $12326.6

The given values are:

Initial amount,

  • P = 6000

Interest rate,

  • r = 9% or 0.09

(a)

If interest compounded annually then,

  • n = 1
  • t = 8

→ [tex]A = P(\frac{1+r}{n} )^n\times t[/tex]

      [tex]= 6000(\frac{1+0.09}{1} )^1\times 8[/tex]

      [tex]= 11955.38[/tex] ($)  

(b)

If interest compounded quarterly then,

  • n = 4
  • t = 8

→ [tex]A = P(\frac{1+r}{n} )^n\times t[/tex]

      [tex]= 6000(\frac{1+0.09}{4} )^4\times 8[/tex]

      [tex]= 12228.62[/tex] ($)

(c)

If interest compounded monthly then,

  • n = 12
  • t = 8

→ [tex]A = P(\frac{1+r}{n} )^n\times t[/tex]

      [tex]=P(\frac{1+0.09}{12} )^{12}\times 8[/tex]

      [tex]= 12293.527[/tex] ($)  

(d)

If interest compounded continuously then,

  • r = 0.09
  • t = 8

→ [tex]A = P\times e^{rt}[/tex]

      [tex]= 6000\times e^{0.09\times 8}[/tex]

      [tex]= 6000\times e^{0.72}[/tex]

      [tex]= 12326.6[/tex] ($)

Thus the answers above are appropriate.

Learn more:

https://brainly.com/question/15686863

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE