Respuesta :
Answer:
The angular velocity of the propeller is 2.22 rad/s.
Explanation:
The angular velocity (ω) of the propeller is:
[tex] \omega = \frac{\Delta \theta}{\Delta t} [/tex]
Where:
θ: is the angular displacement = 10.6 revolutions
t: is the time = 30 s
[tex] \omega = \frac{\Delta \theta}{\Delta t} = \frac{10.6 rev*\frac{2\pi rad}{1 rev}}{30 s} = 2.22 rad/s [/tex]
Therefore, the angular velocity of the propeller is 2.22 rad/s.
I hope it helps you!
The angular velocity will be "2.22 rad/s".
Given:
Angular displacement,
- [tex]\Theta = 10.6[/tex]
Diameter,
- 3 m
Time,
- [tex]\Delta t = 30 \ s[/tex]
Now,
The angular velocity will be:
→ [tex]\omega = \frac{\Delta \Theta}{\Delta t}[/tex]
By putting the values, we get
[tex]= \frac{10.6\times \frac{2 \pi rad}{1 \ rev} }{30 \ s}[/tex]
[tex]= 2.22 \ rad/s[/tex]
Thus the response above is right.
Learn more about velocity here:
https://brainly.com/question/14370151