Answer:
1. [tex]V =1607.7\ in^3[/tex]
2. [tex]V = 105mm^3[/tex]
3. [tex]V = 147yd^3[/tex]
Step-by-step explanation:
Solving (1):
Given
[tex]Radius, r =8\ in[/tex]
[tex]Height, h =8\ in[/tex]
Required
Determine the volume
Volume (V) of a cylinder is calculated as thus:
[tex]V =\pi r^2h[/tex]
[tex]V =3.14 * 8^2 * 8[/tex]
[tex]V =1607.7\ in^3[/tex]
Hence, the volume of the cylinder is [tex]1607.7\ in^3[/tex]
Solving (2):
Given
[tex]Length, l = 5mm[/tex]
[tex]Width, B = 7mm[/tex]
[tex]Height, H = 3mm[/tex]
Required
Determine the volume (V) of the rectangular prism
Volume (V) of a rectangular prism is calculated as thus:
[tex]V = LBH[/tex]
[tex]V = 5mm * 7mm * 3mm[/tex]
[tex]V = 105mm^3[/tex]
Hence, the volume of the prism is [tex]105mm^3[/tex]
Solving (3):
Given
[tex]Length, l = 7yd[/tex]
[tex]Width, B = 7yd[/tex]
[tex]Height, H = 9yd[/tex]
Required
Determine the volume (V) of the pyramid
Volume (V) of a pyramid is calculated as thus:
[tex]V = \frac{1}{3} *LBH[/tex]
[tex]V = \frac{1}{3} * 7yd * 7yd * 9yd[/tex]
[tex]V = \frac{1}{3} * 441yd^3[/tex]
[tex]V = 147yd^3[/tex]
Hence, the volume of the pyramid is [tex]147yd^3[/tex]