Respuesta :

It seems the correct function you need to mention is f(x) = sqrt x

so, I am assuming [tex]f(x) = \sqrt{x}[/tex] and will solve the question based on it.

Answer:

Check the explanation

Step-by-step explanation:

Given the function

[tex]f(x) = \sqrt{x}[/tex]

As the function is translated according to the rule

  • (x, y) → (x - 6, y + 9)

Translation of the function [tex]f(x) = \sqrt{x}[/tex] 6 units to the left will bring the function

[tex]g(x) = \sqrt{x+6}[/tex]

Translation of the function  [tex]g(x) = \sqrt{x+6}[/tex]  9 units up will bring the function

[tex]A\left(x\right)=\sqrt{x+6}+9[/tex]

Determining the range of [tex]A\left(x\right)=\sqrt{x+6}+9[/tex]

  • As we know that the range is the set of dependent values for which the function is defined.

[tex]\mathrm{The\:range\:of\:an\:radical\:function\:of\:the\:form}\:c\sqrt{ax+b}+k\:\mathrm{is}\:\:f\left(x\right)\ge \:k[/tex]

[tex]k=9[/tex]

[tex]f\left(x\right)\ge \:9[/tex]

so

[tex]\mathrm{Range\:of\:}\sqrt{x+6}+9:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:9\:\\ \:\mathrm{Interval\:Notation:}&\:[9,\:\infty \:)\end{bmatrix}[/tex]

Therefore, the expression describes the range of A(x) will be:

[tex]f\left(x\right)\ge \:\:9\:or\:y\:\ge \:\:\:9[/tex]

Answer:

d on 3dge

Step-by-step explanation:

genius

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE