Respuesta :

Answer:

[tex]\displaystyle y=\frac{3}{5}x-1[/tex]

Step-by-step explanation:

The Equation of a Line

The equation of the line in slope-intercept form is:

[tex]y=mx+b[/tex]

Where m is the slope and b the y-intercept.

The equation of a line passing through points (x1,y1) and (x2,y2) can be found as follows:

[tex]\displaystyle y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

We are given the points (5,2) and (0,-1), thus:

[tex]\displaystyle y-2=\frac{-1-2}{0-5}(x-5)[/tex]

Operating:

[tex]\displaystyle y-2=\frac{-3}{-5}(x-5)[/tex]

[tex]\displaystyle y-2=\frac{3}{5}(x-5)[/tex]

To find the slope-intercept form, we continue to simplify the expression:

Removing the parentheses:

[tex]\displaystyle y-2=\frac{3}{5}x-\frac{3}{5}\cdot 5[/tex]

[tex]\displaystyle y-2=\frac{3}{5}x-3[/tex]

Adding 2:

[tex]\displaystyle y=\frac{3}{5}x-3+2[/tex]

[tex]\mathbf{\displaystyle y=\frac{3}{5}x-1}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE