Answer:
Margin of error = 0.475
Step-by-step explanation:
Given that,
Confidence level, C = 0.95
Sample size, n = 100
Population standard deviation, [tex]\sigma = 2.6[/tex]
When the confidence level is 0.95, the value of [tex]z_{\alpha/2}=1.645[/tex]
The margin of error is given by :
[tex]E=z_{\alpha/2}\times \dfrac{{\sigma}}{\sqrt{n} }\\\\E=1.645\times \dfrac{{2.6}}{\sqrt{81} }\\\\=0.475[/tex]
So, the margin of error is 0.475.