Respuesta :

Answer:

Margin of error = 0.475

Step-by-step explanation:

Given that,

Confidence level, C = 0.95

Sample size, n = 100

Population standard deviation, [tex]\sigma = 2.6[/tex]

When the confidence level is 0.95, the value of [tex]z_{\alpha/2}=1.645[/tex]

The margin of error is given by :

[tex]E=z_{\alpha/2}\times \dfrac{{\sigma}}{\sqrt{n} }\\\\E=1.645\times \dfrac{{2.6}}{\sqrt{81} }\\\\=0.475[/tex]

So, the margin of error is 0.475.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE