Answer:
a) [tex]w_{Fy} = 237.61713[/tex]J
b) [tex]w_{g}=-58.86[/tex] J
c) [tex]N=223.44641[/tex]N
Explanation:
Key: theta = θ kinetic friction = μ α = 180°
a) Work of Force put on block
Remember that you need both sides x & y
Equations:
- [tex]w_{F}=F_{x} cos[/tex] | [tex]w_{F}=F_{y} sin[/tex]θ
- [tex]_{net} F_{x} =0[/tex] | [tex]_{net} F_{y} =0[/tex]
- [tex]N=Fcos[/tex]θ | [tex]F_{y} sin[/tex]μ[tex]N-mg=0[/tex]
- | [tex]F_{y} sin[/tex][tex]F_{y} =\frac{mgd sin(theta)}{sin(theta)-(kinetic friction)cos(theta)}[/tex]-μ[tex]Fcos[/tex]θ[tex]=mg[/tex]
- |[tex]w_{Fy} =Fdsin[/tex]θ
- | [tex]w_{Fy} =\frac{(3*9.81)sin(28)}{sin(28)-(0.40)cos(28)}[/tex]
- | [tex]w_{Fy} = 237.61713[/tex]J
b) Work of Gravity on block
- [tex]w_{g} =F_{g}dcos[/tex]α
- [tex]w_{g} =mgdcos[/tex]α
- [tex]w_{g}=(3)(9.81)(2)cos(180)[/tex]
- [tex]w_{g}=-58.86[/tex]J
c) Magnitud of Normal Force
- [tex]F=\frac{mg}{sin(theta)-(kinetic friction)cos(theta)}[/tex]
- [tex]F=\frac{3*9.81}{sin(28)-(0.40)cos(28)}[/tex]
- [tex]F = 253.06871[/tex]
- [tex]N=Fcos[/tex]θ
- [tex]N=(253.06871)cos(28)[/tex]
- [tex]N=223.44641[/tex]N
Hope it helps