Answer:
[tex]f(0) = 0[/tex]
[tex]f(70) = 16.74[/tex]
[tex]f(58.5) = 15.30[/tex]
[tex]x \geq 0[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 2\sqrt x[/tex]
Solving (a): f(0)
[tex]f(x) = 2\sqrt x[/tex]
[tex]f(0) = 2 * \sqrt 0[/tex]
[tex]f(0) = 2 * 0[/tex]
[tex]f(0) = 0[/tex]
Interpretation:
This implies that, the cost of 0 paints is $0
Solving (b): f(70)
[tex]f(x) = 2\sqrt x[/tex]
[tex]f(70) = 2 * \sqrt{70[/tex]
[tex]f(70) = 2 * 8.37[/tex]
[tex]f(70) = 16.74[/tex]
Interpretation:
This implies that, the cost of 70 paints is $16.74
Solving (c): f(58.5)
[tex]f(x) = 2\sqrt x[/tex]
[tex]f(58.5) = 2 * \sqrt{58.5[/tex]
[tex]f(58.5) = 2 * 7.65[/tex]
[tex]f(58.5) = 15.30[/tex]
Interpretation:
This implies that, the cost of 58.5 paints is $15.30
Solving (d): The domain
[tex]f(x) = 2\sqrt x[/tex]
Set the radicand x to [tex]\geq 0[/tex]
i.e.
[tex]x \geq 0[/tex]
Hence:
The domain is [tex]x \geq 0[/tex]