Answer:
[tex]y(x)=c_1e^{-x}+c_2xe^{-x}+c_3x^2e^{-x}[/tex]
Step-by-step explanation:
We can determine the characteristic equation all we have to do is:
let y' = m, hence y" = m², y'" = m³
Therefore, the higher-order differential equation becomes:
m³ + 3m² + 3m + 1 = 0
(m + 1)(m² + 2m + 1) = 0
(m + 1)(m + 1)(m + 1) = 0
(m + 1)³ = 0
m = -1, -1, -1
Therefore the general solution is given as:
[tex]y(x)=c_1e^{-x}+c_2xe^{-x}+c_3x^2e^{-x}[/tex]
[tex]c_1,c_2,c_3\ are\ constants.[/tex]