Write an expression for the magnitude of six ball's velocity, in terms of the angles given in the problem and the magnitude of the eight ball's initial velocity, v.

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

The expression for the velocity of the sixth ball is

 [tex]v_2 = \frac{u_1 sin\theta }{sin \phi cos\theta + cos \phi sin\theta}[/tex]

Explanation:

From the question we are told that

     The mass of the 8 ball is  [tex]m_1 =  0.5 \  kg[/tex]

      The initial velocity of the 8 ball is  [tex]u_1  =  3.7 \  m/s[/tex]

      The initial velocity of the 6 ball is  [tex]u_2  =  0  \  m/s[/tex]

         The mass of the 6 ball is  [tex]m_2 =  0.5 \  kg[/tex]

Generally from the law of momentum conservation is  

     [tex]m_1 *u_1 + m_2 * u_2 = m_1 * v_1 +m_2 *v_2[/tex]

Now along the y  axis

      [tex]u_1 =u_y_1 =  0 \  m/ s[/tex]

      [tex]u_2 =u_y_2=  0 \  m/ s[/tex]

      [tex]v_1 =v_y_1=  v_1 sin \theta  \  m/ s[/tex]

      [tex]v_2 =v_y_2=  v_2 sin \phi  \  m/ s[/tex]

So

  [tex]m_1 *0 + m_2 * 0 = m_1 * (v_1 sin \theta) +m_2 *(v_2 sin \phi )[/tex]

=>  [tex]v_1 = \frac{v_2 sin \phi }{ sin \theta}[/tex]

Now along the x  axis

      [tex]u_1 =u_x_1 =  u_1 \  m/ s[/tex]

       [tex]u_2 =u_2_2=   0 \  m/ s[/tex]

        [tex]v_1 =v_x_1=  v_1 cos \theta  \  m/ s[/tex]

        [tex]v_2 =v_x_2=  v_2 cos \phi  \  m/ s[/tex]

So

        [tex]m_1 *u_1 + m_2 * 0 = m_1 *(v_1 cos \theta) +m_2 *(v_2 cos \phi)[/tex]

=>[tex]m_1 *u_1  = m_1 *(v_1 cos \theta) +m_2 *(v_2 cos \phi)[/tex]    

substituting for [tex]v_1[/tex] in the above equation

=>[tex]m_1 *u_1  = m_1 *([ \frac{v_2 sin \phi }{ sin \theta}] cos \theta) +m_2 *(v_2 cos \phi)[/tex]      

=>[tex]m_1 *u_1  = m_1 *([ \frac{v_2 sin \phi }{ sin \theta}] cos \theta) +m_2 *(v_2 cos \phi)[/tex]

 given that  [tex]m_1 = m_2 = m[/tex]

=>[tex]m *u_1  = m *([ \frac{v_2 sin \phi }{ sin \theta}] cos \theta) +m *(v_2 cos \phi)[/tex]

=>[tex]m *u_1  = m [([ \frac{v_2 sin \phi }{ sin \theta}] cos \theta) + (v_2 cos \phi)][/tex]

=>[tex]u_1  = ([ \frac{v_2 sin \phi }{ sin \theta}] cos \theta) + (v_2 cos \phi)[/tex]

=>[tex]u_1  = v_2 sin\phi cot \theta + v_2 cos\phi [/tex]

[tex]v_2 = \frac{u_1  }{sin\phi cot\theta + cos\phi }[/tex]

converting [tex]cot \phi[/tex] back  to  [tex]\frac{cos \theta}{sin\theta }[/tex]

So

    [tex]v_2 = \frac{u_1  }{sin\phi [\frac{cos \theta}{sin\theta }] + cos\phi }[/tex]

multiply through by  [tex]\frac{sin \theta}{sin \theta }[/tex]

   [tex] \frac{sin \theta}{sin \theta } *v_2 = \frac{sin \theta}{sin \theta } * \frac{u_1  }{sin\phi [\frac{cos \theta}{sin\theta }] + cos\phi }[/tex]

=>  [tex]v_2 = \frac{u_1 sin\theta }{sin \phi cos\theta + cos \phi sin\theta}[/tex]

Ver imagen okpalawalter8
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE