Answer:
[tex]f = \log_{4}\left(\sqrt{\frac{m\cdot n}{19}}\right)[/tex] is equivalent to [tex]f = 0.5\cdot \log_{4} m + 0.5\cdot \log_{4}n -0.5\cdot \log_{4}19[/tex].
Step-by-step explanation:
Let be [tex]f = \log_{4}\left(\sqrt{\frac{m\cdot n}{19}}\right)[/tex], we transform this into an equivalent expression with sums and differences of logarithms by applying logarithm properties:
1) [tex]\log_{4}\left(\sqrt{\frac{m\cdot n}{19}}\right)[/tex] Given.
2) [tex]\log_{4}\left[\left(\frac{m\cdot n}{19} \right)^{0.5}\right][/tex] Definition of square root.
3) [tex]0.5\cdot \log_{4}\left(\frac{m\cdot n}{19} \right)[/tex] [tex]\log_{a} b^{c} = c\cdot \log_{a} b[/tex]
4) [tex]0.5\cdot (\log_{4}m\cdot n -\log_{4} 19)[/tex] [tex]\log_{a} \frac{b}{c} = \log_{a} b - \log_{a} c[/tex]
5) [tex]0.5\cdot \log_{4} m\cdot n -0.5\cdot \log_{4} 19[/tex] Distributive property.
6) [tex]0.5\cdot (\log_{4}m + \log_{4}n)-0.5\cdot \log_{4}19[/tex] [tex]\log_{a} b\cdot c = \log_{a}b +\log_{a} c[/tex]
7) [tex]0.5\cdot \log_{4} m + 0.5\cdot \log_{4}n -0.5\cdot \log_{4}19[/tex] Distributive property/Result.
[tex]f = \log_{4}\left(\sqrt{\frac{m\cdot n}{19}}\right)[/tex] is equivalent to [tex]f = 0.5\cdot \log_{4} m + 0.5\cdot \log_{4}n -0.5\cdot \log_{4}19[/tex].