Respuesta :

Answer:

[tex]f = \log_{4}\left(\sqrt{\frac{m\cdot n}{19}}\right)[/tex] is equivalent to  [tex]f = 0.5\cdot \log_{4} m + 0.5\cdot \log_{4}n -0.5\cdot \log_{4}19[/tex].

Step-by-step explanation:

Let be [tex]f = \log_{4}\left(\sqrt{\frac{m\cdot n}{19}}\right)[/tex], we transform this into an equivalent expression with sums and differences of logarithms by applying logarithm properties:

1) [tex]\log_{4}\left(\sqrt{\frac{m\cdot n}{19}}\right)[/tex] Given.

2) [tex]\log_{4}\left[\left(\frac{m\cdot n}{19} \right)^{0.5}\right][/tex] Definition of square root.

3) [tex]0.5\cdot \log_{4}\left(\frac{m\cdot n}{19} \right)[/tex]   [tex]\log_{a} b^{c} = c\cdot \log_{a} b[/tex]

4) [tex]0.5\cdot (\log_{4}m\cdot n -\log_{4} 19)[/tex]   [tex]\log_{a} \frac{b}{c} = \log_{a} b - \log_{a} c[/tex]

5) [tex]0.5\cdot \log_{4} m\cdot n -0.5\cdot \log_{4} 19[/tex] Distributive property.

6) [tex]0.5\cdot (\log_{4}m + \log_{4}n)-0.5\cdot \log_{4}19[/tex]   [tex]\log_{a} b\cdot c = \log_{a}b +\log_{a} c[/tex]

7) [tex]0.5\cdot \log_{4} m + 0.5\cdot \log_{4}n -0.5\cdot \log_{4}19[/tex] Distributive property/Result.

[tex]f = \log_{4}\left(\sqrt{\frac{m\cdot n}{19}}\right)[/tex] is equivalent to  [tex]f = 0.5\cdot \log_{4} m + 0.5\cdot \log_{4}n -0.5\cdot \log_{4}19[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE