What is the perimeter of the composite figure? Round to the nearest tenth

Answer:
123.8 units
Step-by-step explanation:
The vertices of the polygon has been labelled ABCDEF, as shown in the diagram attached below.
Perimeter of the Polygon = [tex] \overline{AB} + \overline{BC} + \overline{CD} + \overline{DE} + \overline{EF} + \overline{FA} [/tex]
[tex] \overline{AB} [/tex] = |-12 - 24| = |-36| = 36 units
[tex] \overline{BC} [/tex]: calculate the distance between B(24, 16) and C(15, 3) using the distance formula.
[tex] \overline{BC} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
[tex] \overline{BC} = \sqrt{(24 - 15)^2 + (16 - 3)^2} [/tex]
[tex] \overline{BC} = \sqrt{(9)^2 + (13)^2} [/tex]
[tex] \overline{BC} = \sqrt{81 + 169} = \sqrt{250} [/tex]
[tex] \overline{BC} = 15.8 units [/tex]
[tex] \overline{CD} [/tex] = |6 - 15| = |-9| = 9 units
[tex] \overline{DE} [/tex] = |3 -(-12)| = |-15| = 15 units
[tex] \overline{EF} [/tex] = |-12 - 6| = |-18| = 18 units
[tex] \overline{FA} [/tex] = |18 -(-12)| = 30 units
Perimeter = 36 + 15.8 + 9 + 15 + 18 + 30 = 123.8 units