Respuesta :
Answer:
a
P(X \le 250 ) = 0.7564 [/tex] , [tex]P(X < 250 ) = 0.7564 [/tex] ,
[tex]P(X < 300 ) = 0.09922 [/tex]
b
[tex]P(100 < X < 250 ) =0.644 [/tex]
c
[tex] x = 192.1 [/tex]
Step-by-step explanation:
From the question we are told that
The value for [tex]\alpha = 2.6[/tex]
The value for [tex]\beta = 220[/tex]
Generally the Weibull distribution function is mathematically represented as
[tex]F( x , \alpha , \beta ) = \left \{ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x < 0} \atop { 1- e^{-(\frac{x}{\beta } )^{\alpha } }}\ \ \ \ \ \ x \ge 0} \right[/tex]
Generally the probability that a specimen's lifetime is at most 250 is mathematically represented as
[tex]P(X \le 250 ) = F(250, 2.7 , 220 )[/tex]
[tex]P(X \le 250 )=1 - e^{- (\frac{250}{220} )^{2.7}}[/tex]
[tex]P(X \le 250 ) = 1 - 0.2436[/tex]
[tex]P(X \le 250 ) = 0.7564 [/tex]
Generally the probability that a specimen's lifetime is less than 250
[tex]P(X < 250 ) = F(250, 2.7 , 220 )[/tex]
[texP(X < 250 ) =1 - e^{- (\frac{250}{220} )^{2.7}}[/tex]
[tex]P(X < 250 ) = 1 - 0.2436[/tex]
[tex]P(X < 250 ) = 0.7564 [/tex]
Generally the probability that a specimen's lifetime is more than 300
[tex]P(X > 300 ) = 1- p(X \le 300 )[/tex]
[tex]P(X > 300 ) = 1- F(300, 2.7 , 220 )[/tex]
[texP(X < 300) =1- [1 - e^{- (\frac{300}{220} )^{2.7}}][/tex]
[tex]P(X < 300 ) = 0.09922 [/tex]
Generally the probability that a specimen's lifetime is between 100 and 250 is
[tex]P(100 < X < 250 ) = P(X < 250) - P(X < 100)[/tex]
=> [tex]P(100 < X < 250 ) =F(250 , 2.7 , 220 ) - F(100 , 2.7 , 220 ) [/tex]
=> [tex]P(100 < X < 250 ) =(1 - e^{-(\frac{250}{220})^{2.7}}) - (1 - e^{-(\frac{100}{220})^{2.7}}) [/tex]
=> [tex]P(100 < X < 250 ) = (1 - 0.244 ) - (1- 0.888)[/tex]
=> [tex]P(100 < X < 250 ) =0.644 [/tex]
Generally the value such that exactly 50% of all specimens
[tex]P(X > x) = 1-P(X < x) = 0.50[/tex]
=> [tex]P(X > x) = 1- (1 - e^{- (\frac{x}{220}) ^{2.7}}) = 0.50[/tex]
=> [tex] P(X> x ) = e^(- \frac{x}{20})^{2.7} = 0.50 [/tex]
=> [tex] P(X> x ) = (- \frac{x}{20})^{2.7} = ln0.50 [/tex]
=> [tex] P(X> x ) = \frac{x}{20} =[ -ln0.50 ] ^{frac{1}{2.7}}[/tex]
=> [tex] x = 220[ -ln0.50 ] ^{frac{1}{2.7}}[/tex]
=> [tex] x = 192.1 [/tex]