The compressive strength of samples of cement can be modeled by a normal distribution with a mean of 6000 kilograms per square centimeter and a standard deviation of 100 kilograms per square centimeter. (a) What is the probability that a samples strength is less than 6250 kilograms per square centimeter? (b) What is the probability that a samples strength is between 5800 and 5900 kilograms per square centimeter? (c) What strength is exceeded by 95% of the samples?

Respuesta :

Answer

a

[tex]\Phi (2.5) = 0.9938[/tex]

b

[tex]P(5800 <  X < 5900 ) =  0.13591 [/tex]  

c

[tex]x = 5835.5 [/tex]

Question

From the question we are told that

   The mean is  [tex]\mu  =  6000 \  kg/cm^2   [/tex]

    The standard deviation is  [tex]\sigma  =  100 \  kg/ cm^2 [/tex]

Generally the probability that a samples strength is less than 6250 kilograms per square centimeter is mathematically represented as

        [tex]P(X < 6250  ) =  P(\frac{ X - \mu}{\sigma } <  \frac{6250 - 6000 }{100}  )[/tex]

Generally [tex]\frac{X - \mu }{\sigma }  =  Z(The  \ standardized \  value  \ of  \  X )[/tex]

         [tex]P(X < 6250  ) =  P(Z< 2.5 )[/tex]

From the z-table  

      [tex]\Phi (2.5) = 0.9938[/tex]

Generally the probability that a samples strength is between 5800 and 5900 kilograms per square centimeter is mathematically represented as

    [tex]P(5800 <  X < 5900 ) =  P(\frac{5800 - 6000}{100} < \frac{X -\mu}{\sigma} <  \frac{5900 - 6000}{100}   )[/tex]

=> [tex]P(5800 <  X < 5900 ) =  P(-2< Z< -1   )[/tex]

=> [tex]P(5800 <  X < 5900 ) =  P(Z <  -1)  - P( Z< -2 )[/tex]  

From the z-table  

    [tex]P(Z <  -2)  = 0.02275[/tex]

and

    [tex]P(Z <  -1)  = 0.15866[/tex]

So

    [tex]P(5800 <  X < 5900 ) =  0.15866 - 0.02275[/tex]    

=>    [tex]P(5800 <  X < 5900 ) =  0.13591 [/tex]  

Generally the strength that is exceeded by 95% is mathematically evaluated  as

        [tex]P(X >  x) = 1-  P(\frac{X - \mu }{\sigma} \le  \frac{x- 6000}{100}) = 0.95 [/tex]

=> [tex]P(X >  x) =  P(Z \e \frac{x- 6000}{100}) = 0.05 [/tex]

From the normal distribution table  the critical value  of  0.05 is  

    [tex]z = - 1.645[/tex]

So

      [tex]\frac{x- 6000}{100} = - 1.645[/tex]

=>   [tex]x = (-1.645 * 100) + 6000[/tex]

=>   [tex]x = 5835.5 [/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE