Respuesta :
Given :-
ΔBCD ≅ ΔGEF
Then :-
∠B <=> ∠G ( ∠B = ∠G )
∠C <=> ∠E ( ∠C = ∠E )
∠D <=> ∠F ( ∠ D = ∠F )
BC <=> GE ( BC = GE )
CD <=> EF ( CD = EF )
BD <=> GF ( BD = GF )
Using this let us find CD .
CD = EF
Which means :-
[tex] 3x + 8 = 4x + 6[/tex]
[tex]8 = 4x + 6 - 3x[/tex]
[tex]8 = 1x + 6[/tex]
[tex]1x + 6= 8[/tex]
[tex]1x = 8 - 6[/tex]
[tex]1x = 2[/tex]
[tex]x = 2[/tex]
Then :-
EF =
[tex]EF = 4x + 6 \\ = 4 \times 2 + 6 \\ = 8 + 6 \\ = 14[/tex]
CD =
[tex]CD = 3x + 8 \\ = 3 \times 2 + 8 \\ = 6 + 8 \\ = 14[/tex]
Therefore , CD = 14 .
△BCD≅△GEF
The measure of CD is 14
Given :
Two triangles are congruent
△BCD≅△GEF
When triangles are congruent then the sides are equal
[tex]BC=GE\\CD=EF\\DB=FG\\[/tex]
Given that CD=3x+8 and EF=4x+6
[tex]CD=EF\\3x+8=4x+6\\3x+8-3x=4x-3x+6\\8=x+6\\8-6=x+6-6\\x=2[/tex]
The value of x=2
Now we find measure of CD
[tex]CD=3x+8\\CD=3(2)+8\\CD=14[/tex]
The measure of CD is 14
Learn more : brainly.com/question/18373823