Respuesta :

Given :-

ΔBCD ≅ ΔGEF

Then :-

∠B <=> ∠G ( ∠B = ∠G )

∠C <=> ∠E ( ∠C = ∠E )

∠D <=> ∠F ( ∠ D = ∠F )

BC <=> GE ( BC = GE )

CD <=> EF ( CD = EF )

BD <=> GF ( BD = GF )

Using this let us find CD .

CD = EF

Which means :-

[tex] 3x + 8 = 4x + 6[/tex]

[tex]8 = 4x + 6 - 3x[/tex]

[tex]8 = 1x + 6[/tex]

[tex]1x + 6= 8[/tex]

[tex]1x = 8 - 6[/tex]

[tex]1x = 2[/tex]

[tex]x = 2[/tex]

Then :-

EF =

[tex]EF = 4x + 6 \\ = 4 \times 2 + 6 \\ = 8 + 6 \\ = 14[/tex]

CD =

[tex]CD = 3x + 8 \\ = 3 \times 2 + 8 \\ = 6 + 8 \\ = 14[/tex]

Therefore , CD = 14 .

△BCD≅△GEF

The measure of CD is 14

Given :

Two triangles are congruent

△BCD≅△GEF

When triangles are congruent then the sides are equal

[tex]BC=GE\\CD=EF\\DB=FG\\[/tex]

Given that CD=3x+8 and EF=4x+6

[tex]CD=EF\\3x+8=4x+6\\3x+8-3x=4x-3x+6\\8=x+6\\8-6=x+6-6\\x=2[/tex]

The value of x=2

Now we find measure of CD

[tex]CD=3x+8\\CD=3(2)+8\\CD=14[/tex]

The measure of CD is 14

Learn more :  brainly.com/question/18373823

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE