The height y (in feet) of a baseball t seconds after it is hit can be modeled by the function y = −16t2 + 96t + 3. About how long does it take to hit the ground?

Respuesta :

Answer:

6.03 seconds

Step-by-step explanation:

Given

[tex]y = -16t\² + 96t + 3[/tex]

To solve this, we simply set the height to 0.

i.e. [tex]y = 0[/tex]

So, we have:

[tex]-16t\² + 96t + 3 = 0[/tex]

Solve using quadratic formula.

[tex]t = \frac{-b+-\sqrt{b^2 - 4ac}}{2a}[/tex]

Where

[tex]a = -16[/tex]

[tex]b = 96[/tex]

[tex]c = 3[/tex]

[tex]t = \frac{-96+-\sqrt{96^2 - 4 * -16 * 3}}{2 * -16}[/tex]

[tex]t = \frac{-96+-\sqrt{9216 +192}}{-32}[/tex]

[tex]t = \frac{-96+-\sqrt{9408}}{-32}[/tex]

[tex]t = \frac{-96+-96.9948452239}{-32}[/tex]

[tex]t = \frac{-96+96.9948452239}{-32}[/tex] or [tex]t = \frac{-96-96.9948452239}{-32}[/tex]

[tex]t = \frac{0.9948452239}{-32}[/tex] or [tex]t = \frac{-192.994845224}{-32}[/tex]

[tex]t = -0.031088913245535[/tex] or [tex]t = 6.0310889132455[/tex]

Since time can't be negative, we have:

[tex]t = 6.0310889132455[/tex]

[tex]t = 6.03\ seconds[/tex] (approximated)

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE

Otras preguntas